136 research outputs found

    Dynamic Emotional and Neural Responses to Music Depend on Performance Expression and Listener Experience

    Get PDF
    Apart from its natural relevance to cognition, music provides a window into the intimate relationships between production, perception, experience, and emotion. Here, emotional responses and neural activity were observed as they evolved together with stimulus parameters over several minutes. Participants listened to a skilled music performance that included the natural fluctuations in timing and sound intensity that musicians use to evoke emotional responses. A mechanical performance of the same piece served as a control. Before and after fMRI scanning, participants reported real-time emotional responses on a 2-dimensional rating scale (arousal and valence) as they listened to each performance. During fMRI scanning, participants listened without reporting emotional responses. Limbic and paralimbic brain areas responded to the expressive dynamics of human music performance, and both emotion and reward related activations during music listening were dependent upon musical training. Moreover, dynamic changes in timing predicted ratings of emotional arousal, as well as real-time changes in neural activity. BOLD signal changes correlated with expressive timing fluctuations in cortical and subcortical motor areas consistent with pulse perception, and in a network consistent with the human mirror neuron system. These findings show that expressive music performance evokes emotion and reward related neural activations, and that music's affective impact on the brains of listeners is altered by musical training. Our observations are consistent with the idea that music performance evokes an emotional response through a form of empathy that is based, at least in part, on the perception of movement and on violations of pulse-based temporal expectancies

    Listeners feel the beat: Entrainment to English and French speech rhythms

    Get PDF
    Can listeners entrain to speech rhythms? Monolingual speakers of English and French and balanced English–French bilinguals tapped along with the beat they perceived in sentences spoken in a stress-timed language, English, and a syllable-timed language, French. All groups of participants tapped more regularly to English than to French utterances. Tapping performance was also influenced by the participants’ native language: English-speaking participants and bilinguals tapped more regularly and at higher metrical levels than did French-speaking participants, suggesting that long-term linguistic experience with a stress-timed language can differentiate speakers’ entrainment to speech rhythm

    Optimal perceived timing: integrating sensory information with dynamically updated expectations

    Get PDF
    The environment has a temporal structure, and knowing when a stimulus will appear translates into increased perceptual performance. Here we investigated how the human brain exploits temporal regularity in stimulus sequences for perception. We find that the timing of stimuli that occasionally deviate from a regularly paced sequence is perceptually distorted. Stimuli presented earlier than expected are perceptually delayed, whereas stimuli presented on time and later than expected are perceptually accelerated. This result suggests that the brain regularizes slightly deviant stimuli with an asymmetry that leads to the perceptual acceleration of expected stimuli. We present a Bayesian model for the combination of dynamically-updated expectations, in the form of a priori probability of encountering future stimuli, with incoming sensory information. The asymmetries in the results are accounted for by the asymmetries in the distributions involved in the computational process

    At-risk elementary school children with one year of classroom music instruction are better at keeping a beat

    Get PDF
    Temporal processing underlies both music and language skills. There is increasing evidence that rhythm abilities track with reading performance and that language disorders such as dyslexia are associated with poor rhythm abilities. However, little is known about how basic time-keeping skills can be shaped by musical training, particularly during critical literacy development years. This study was carried out in collaboration with Harmony Project, a non-profit organization providing free music education to children in the gang reduction zones of Los Angeles. Our findings reveal that elementary school children with just one year of classroom music instruction perform more accurately in a basic finger-tapping task than their untrained peers, providing important evidence that fundamental time-keeping skills may be strengthened by short-term music training. This sets the stage for further examination of how music programs may be used to support the development of basic skills underlying learning and literacy, particularly in at-risk populations which may benefit the most

    Laparoscopic resection of a residual retroperitoneal tumor mass of nonseminomatous testicular germ cell tumors

    Get PDF
    Resection of a residual retroperitoneal tumor mass (RRRTM) is standard procedure after combination chemotherapy for metastatic nonseminomatous testicular germ cell tumors (NSTGCT). At the University Medical Center Groningen, 79 consecutive patients with disseminated NSTGCT were treated with cisplatin combination chemotherapy between 2005 and 2007. Laparoscopic RRRTM was performed for patients with RRTM located less than 5 cm ventrally or laterally from the aorta or the vena cava. The 29 patients who fulfilled the criteria had a median age of 25 years (range, 16-59 years). The stages of disease before chemotherapy treatment according to the Royal Marsden classification were 2A (n = 6, 21%), 2B (n = 14, 48%), 2C (n = 3, 10%), and 4 with a lymph node status of N2 (n = 6, 21%). The median duration of laparoscopy was 198 min (range, 122-325 min). The median diameter of the RRTM was 21 mm (range, 11-47 mm). Laparoscopic resection was successful for 25 patients (86%). Conversion was necessary for three patients (10%): two due to bleeding and one because of obesity. One nonplanned hand-assisted procedure (3%) also had to be performed. Histologic examination of the specimens showed fibrosis or necrosis in 12 patients (41%), mature teratoma in 16 patients (55%), and viable tumor in 1 patient (3%). The median hospital stay was 1 day (range, 1-6 days). During a median follow-up period of 47 months (29-70 months), one patient experienced an early relapse (1 month after the end of treatment) (4%). For properly selected patients, laparoscopic resection of RRTM is an improvement in the combined treatment of disseminated NSTGCT and associated with a short hospital stay, minimal morbidity, rapid recovery, and a neat cosmetic result. Long-term data to prove oncologic efficacy are awaited

    An assessment of air-sea heat fluxes from ocean and coupled reanalyses

    Get PDF
    Sixteen monthly air–sea heat flux products from global ocean/coupled reanalyses are compared over 1993–2009 as part of the Ocean Reanalysis Intercomparison Project (ORA-IP). Objectives include assessing the global heat closure, the consistency of temporal variability, comparison with other flux products, and documenting errors against in situ flux measurements at a number of OceanSITES moorings. The ensemble of 16 ORA-IP flux estimates has a global positive bias over 1993–2009 of 4.2 ± 1.1 W m−2. Residual heat gain (i.e., surface flux + assimilation increments) is reduced to a small positive imbalance (typically, +1–2 W m−2). This compensation between surface fluxes and assimilation increments is concentrated in the upper 100 m. Implied steady meridional heat transports also improve by including assimilation sources, except near the equator. The ensemble spread in surface heat fluxes is dominated by turbulent fluxes (>40 W m−2 over the western boundary currents). The mean seasonal cycle is highly consistent, with variability between products mostly <10 W m−2. The interannual variability has consistent signal-to-noise ratio (~2) throughout the equatorial Pacific, reflecting ENSO variability. Comparisons at tropical buoy sites (10°S–15°N) over 2007–2009 showed too little ocean heat gain (i.e., flux into the ocean) in ORA-IP (up to 1/3 smaller than buoy measurements) primarily due to latent heat flux errors in ORA-IP. Comparisons with the Stratus buoy (20°S, 85°W) over a longer period, 2001–2009, also show the ORA-IP ensemble has 16 W m−2 smaller net heat gain, nearly all of which is due to too much latent cooling caused by differences in surface winds imposed in ORA-IP

    Beat synchronization across the lifespan: intersection of development and musical experience

    Get PDF
    Rhythmic entrainment, or beat synchronization, provides an opportunity to understand how multiple systems operate together to integrate sensory-motor information. Also, synchronization is an essential component of musical performance that may be enhanced through musical training. Investigations of rhythmic entrainment have revealed a developmental trajectory across the lifespan, showing synchronization improves with age and musical experience. Here, we explore the development and maintenance of synchronization in childhood through older adulthood in a large cohort of participants (N = 145), and also ask how it may be altered by musical experience. We employed a uniform assessment of beat synchronization for all participants and compared performance developmentally and between individuals with and without musical experience. We show that the ability to consistently tap along to a beat improves with age into adulthood, yet in older adulthood tapping performance becomes more variable. Also, from childhood into young adulthood, individuals are able to tap increasingly close to the beat (i.e., asynchronies decline with age), however, this trend reverses from younger into older adulthood. There is a positive association between proportion of life spent playing music and tapping performance, which suggests a link between musical experience and auditory-motor integration. These results are broadly consistent with previous investigations into the development of beat synchronization across the lifespan, and thus complement existing studies and present new insights offered by a different, large cross-sectional sample

    Interactive Rhythmic Auditory Stimulation Reinstates Natural 1/f Timing in Gait of Parkinson's Patients

    Get PDF
    Parkinson's disease (PD) and basal ganglia dysfunction impair movement timing, which leads to gait instability and falls. Parkinsonian gait consists of random, disconnected stride times—rather than the 1/f structure observed in healthy gait—and this randomness of stride times (low fractal scaling) predicts falling. Walking with fixed-tempo Rhythmic Auditory Stimulation (RAS) can improve many aspects of gait timing; however, it lowers fractal scaling (away from healthy 1/f structure) and requires attention. Here we show that interactive rhythmic auditory stimulation reestablishes healthy gait dynamics in PD patients. In the experiment, PD patients and healthy participants walked with a) no auditory stimulation, b) fixed-tempo RAS, and c) interactive rhythmic auditory stimulation. The interactive system used foot sensors and nonlinear oscillators to track and mutually entrain with the human's step timing. Patients consistently synchronized with the interactive system, their fractal scaling returned to levels of healthy participants, and their gait felt more stable to them. Patients and healthy participants rarely synchronized with fixed-tempo RAS, and when they did synchronize their fractal scaling declined from healthy 1/f levels. Five minutes after removing the interactive rhythmic stimulation, the PD patients' gait retained high fractal scaling, suggesting that the interaction stabilized the internal rhythm generating system and reintegrated timing networks. The experiment demonstrates that complex interaction is important in the (re)emergence of 1/f structure in human behavior and that interactive rhythmic auditory stimulation is a promising therapeutic tool for improving gait of PD patients
    corecore